Nomenclature

G_{n} - Stat from Game Number n
$R O S_{\text {calc }}$ - Rest of Season Calculation
$L X_{\text {calc }}$ - Last X Games Calculation
$W t X_{\text {calc }}$ - Weighted X Games Calculation
$S 2 D_{\text {calc }}$ - Season to Date Calculation
$w t_{1}$ - Weight Applied to $R O S_{\text {calc }}$
$w t_{2}$ - Weight Applied to $L X_{\text {calc }}$

Moving Calculations

Explanation/Theory

Moving Calculations attempt to capture a team/player's performance with a heavier emphasis on a smaller sample size relative to the rest of the season. This offers different perspectives to how performance is trending throughout a season. The process described below is used for averages, percentages, rates, and ratings; however, the simplest version is used in calculating moving averages (like points per game).
(Teams on average play 3.5 games per week. The combination of 3, 5, and 7 game sample sizes typically provide a 2 week snapshot of an 82 game season)

1. Simple

Calculation from the last 3,5,7 games

2. Weighted

Calculations from the last 3 , 5 , or 7 games are combined with the rest of season calculation while being given equal weight. The equations below show the process

Equations

for $X=3,5,7$ and $w t_{1}=0.5, w t_{2}=0.5$
($n=$ game number)
if $n \geq(2 * X)+1$

$$
\begin{gathered}
L X_{a v g}(n)=\frac{G_{n-X+1}+G_{n-X+2}+\ldots+G_{n}}{X} \\
R O S_{a v g}(n)=\frac{G_{1}+G_{2}+\ldots+G_{n-X}}{n-X} \\
W t X_{a v g}(n)=\left(w t_{1} * R O S_{a v g}(n)\right)+\left(w t_{2} * L X_{a v g}(n)\right)
\end{gathered}
$$

elseif $n \geq X+1$

$$
\begin{gathered}
L X_{a v g}(n)=\frac{G_{n-X+1}+G_{n-X+2}+\ldots+G_{n}}{X} \\
R O S_{a v g}(n)=W t X_{a v g}(n)=S 2 D_{a v g}(n)=\frac{G_{1}+G_{2}+\ldots+G_{n}}{n}
\end{gathered}
$$

else

$$
L X_{a v g}(n)=\operatorname{ROS}_{a v g}(n)=W t X_{a v g}(n)=S 2 D_{a v g}(n)=\frac{G_{1}+G_{2}+\ldots+G_{n}}{n}
$$

